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Abstract 
	 This paper attempts a very approximate method of constructing a series of rules and an 
equation that can be used to estimate the maximum computational capacity of a spherical 
system. One example of such a system would be the observable universe, which is commonly 
referred to as spherical in shape and hence if organised correctly could be used as a spherical 
computational system. The model created during this paper will then be used to estimate the 
computational capacity of various scenarios which will be used to draw a conclusion on the 
model.


Introduction 
	 There are three key limits to the computational capacity a system that follows the laws 
of physics can possess, and since the spherical system being theorised is a physical system 
that follows these laws these are the limits at which this system can process information. 
However in order to address these limits a few key definitions need to be made:


	 A tick will be defined as the singular smallest moment within the computational system, 
this would be one clock cycle in a traditional computer, however due to the nature of this 
system, it should achieve far far greater computational capacity per cycle than a traditional 
computer (to the extent at which when talking about simulating a universe one tick would 
compute one plank second within the simulated universe).


	 Information is used as any kind of operation code or operation data required for a 
process or computational method, this could be stored as the quantum spin of a particle or 
other methods. The term “information” will also be used as in exchange for the term of a “bit” 
at various points as computational bits aren’t really what is being talked about, rather the 
smallest quantity which can store a value is.


The First Limit: Operations 
	 The first limit is the speed at which the system can operate. This is the actual speed at 
which the system “computes” its fundamental operations, in a traditional binary computer this 
would be operations such as AND, NOT, OR, XOR, etc. Since this computational system shall 
be quantum in order to reach it’s true capacity there are two key equations for calculating the 

time taken per operations:  and  [2], the former being used for simple πh /2E πh /E
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computational operations which contain few quantum flips, and the latter being used for 
complex computations that contain lots of quantum flips.

	 As it is not actually known how a computational system this massive would operate and 
which of the two primary categories it would fall into, I will be assuming that a computational 
system this large tasked with such a task as simulating a universe or other similarly scaled 

processes would use the more complex but slower estimate of .


	  being the numerical constant pi ~3.1415;


	  being Planck’s reduced constant, ; 

	  being the energy supplied to this operation;


Taking the number of operations that need to be operated per tick to be  : 


	  being the quantity of information that needs to be processed;


	 y being the number of operations required per piece of information;

The time per operation can then be combined with the number of estimations to create the 

equation for the amount of time required for all operations to take place per tick  

where  is the total energy supplied to all the operations and  is the time taken for all 

operations per tick.

	 Typically, it would also be assumed that parallel operations would then lower this 

quantity of time, but interestingly it actually doesn’t. This is because  and by 

segmenting the operations into n parallel operations, the total Energy is then also segmented 

into n portions , hence the value of energy supplied to the system is divided by n, 

whilst the value of time per subsection is also divided by n to account for the parallel 

processing, causing the equation involving n to be  which 

circles back to be  .The reason then that parallel processing is typically used is 

to decrease the quantity of energy at which any part of traditional computer is exposed to so 
as to prevent connections within chips from melting due to spreading the energy input across a 
larger volume, but as these calculations already assume that the system is organised perfectly 
and operated on at an atomical level it can be assumed that such an organisation would allow 
particles to be independent and retain their approximate positions due to the cohesion of their 
neighbours or some other method invented by a society great enough to create such a 
computational system.


πh /Ep

π

h 1.0545 × 10−34

Ep

Iy

I

To = Iyπh /Eo

Eo To

Eo = ∑ Ep

Ep = Eo /n

To = Iyπhn /Ep = Iyπhn /Eon

To = Iyπh /Eo
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The Second Limit: Memory 
	 The second limit is the amount of memory available to the universe. In this case memory 
means the total number of bits available for a computer system to process, this is the 
equivalent of RAM in a traditional computer. Modern Quantum computers can store a single bit 

of memory within the spin of an electron or the spin of a nucleus [4], these are separate 
methods but as far as I can tell an electron is required to move the data around anyway, so it’s 
safe to say that in this scenario the smallest quantity of particles required to store a bit is a 
hydrogen atom, containing a singular electron and a singular proton. This then means that 
continuing this assumption, each pair of electrons and protons dedicated to memory can store 
one bit of data to be used by the system. Therefore the number of bits of which a system can 

store can be approximated to be equal to , or the minimum value from the subset of 

quantities of electrons supplied and protons supplied, as each atom will require both an 
electron and a proton.


The Third Limit: Transferring Information 
The third, final and most complex limit is the speed at which information can be moved 

and therefore transferred. As the computational system being calculated is spherical and it is 
assumed that the entire system contains useful and constantly used locations at which 
information may need to be transferred to and from, it is now required to estimate the average 
distance at which a piece of information will need to travel between ticks. This can be 
completed via calculating the average distance between two points within a sphere, which 
requires some calculus.

	 Interestingly, this problem often arises in nature, one such example being calculating the 
mean distance between amino acids within proteins, which is where this very brief yet 

surprisingly well summarised explanation can be found: [3]


min(e, p)
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	 Now that an approximate distance for the average journey a piece of information within 

the system will need to take has been reached, being , it can be used to define the 

approximate average time a piece of information will be required to travel, this being the 
distance travelled divided by the speed travelled at. 

	 To actually calculate this value, another assumption needs to be made, that the 
spherical system is not expanding and is instead constant. This is a rather large assumption, 
but thinking about the result of this assumption we can realise that assuming the expansion of 
such a system could result in the ripping apart of computational operators and would vary the 
radius, hence slowing the system down as it expands.

	 Using this assumption, the velocity in relation to this path can be calculated in relation to 
the energy supplied, which assuming this system is constructed within a vacuum is directly 
calculated using the relativistic kinetic energy equation:


  	 which becomes 	 


With: m being the mass; v being velocity; c being speed of light;

	 The relativistic kinetic energy equation is used instead of the simplified classical 

 due to the system abiding by the laws of physics, which states the maximum rate 

at which an individual piece of information can be transferred through a vacuum is limited by 

the speed of light, defined as  meters/sec [5], also referred to as c, and the 

relativistic equation prevents any quantity of energy from calculating a velocity greater than 
this.

	 It’s also important to note how the mass will be calculated for use in this equation, this 
could be done a variety of ways, but in this paper will be done using Avogadro’s constant to 6 

d.p.  [6], the assumption that each bit of information will be transferred and 

stored using a hydrogen atom [limit 2] and that a hydrogen atom has an approximate atomic 

mass of 1.00797 [7]. Using this, the mass in grams of a hydrogen atom can be calculated to be 

approximately , although as the kinetic energy equation requires a 

value of m in terms of kilograms this must be divided by 1000, which is the equivalent of 

increasing Avogadro’s constant to , giving the mass of a hydrogen atom in kg 

to have an estimate of . Hence the value m can be 

36R /35

Ek =
mc2

1 − (v/c)2
− mc2 V = c 1 − (

mc2

Ek + mc2
)
2

Ek = mv2 /2

2.9979 × 108

6.022140 × 1023

1.00797/6.022140 × 1023

6.022140 × 1026

1.00797
6.022140 × 1026

≈ 1.673774 × 10−27
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taken to represent  multiplied by the number of bits to be transferred, since 

this a constant it will be referred to as  for simplicities sake.


	 Introducing the kinetic energy equation to the distance equation calculated previously 
creates an estimate for the amount of time each information transfer should take:


(Keeping m as m in this version for simplicity.)

	 

Due to the nature of how square numbers work, splitting these transfers into multiple parallel 
operations does actually linearly increase the time efficiency of this part of the system.

This can be calculated to be the sum of all information transfers (which is equivalent to 
multiplying the equation by the quantity of transfers) then dividing this value by the number of 

transfers able to be sent at one time to reduce by the scale concurrent transfers. Using  as the 

quantity of information to be transferred and  as the “batch size” to be the number of 

transfers that can take place concurrently.

	 This gives the final equation for this limit to be:


1.673774 × 10−27

k

I

b
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35c 1 − ( mc2
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2

Ta =
36RI

35bc 1 − ( kIc2

E + kIc2 )2



Putting These Limits Together 
Based upon these limits a summarised estimate for the speed at which a spherical system 
computes can be created, through connecting the time at which all the operations per cycle 
take to occur [limit 1], to the time at which is required for all the information required to travel to 
it’s required destination [limit 3] and how much information can actually be stored by the 
system [limit 2].

	 To combine limit 1 and 3 is actually pretty trivial, all that is required is to add the 

equations together to get the time taken per cycle as: , however it is also 

important to note that both of these equations main inner limits is by the energy supplied, 
hence the energy requirements must be given separate identities such that the ratio of energy 
supplements can be explored separately and not locked into a 50/50 split. Therefore to 

represent the separate energy splits it should be noted that  : where  is the total 

energy supplied to the system;  is the energy supplied to the operations; and  is the 

energy supplied to the transfer of information.

	 Bringing limit 2 into this, a ratio also needs to be attached for the quantity of bit stores 
used for storing data between cycles and the quantity used for transferring information during 
cycles, although it can be assumed that between cycles the information transfers also retain 
their values so as to be used in the next cycle, some information is likely also required to be 
stored during a cycle and not processed - however this quantity will vary across the whatever 

the system is being used for - so it can be defined that  where ;  is 

the number of information stores used in a cycle for data transfer; and  is the number of 

information stores used for data storage during and between cycles.


	  will not be mentioned again since it does not affect the operational speed, and is only 

important if the number of total bits is set, since  would be “sat aside” during an operation.


	 This gives:


(See individual limits for explanations on individual components and their representations)


	 Bearing in mind which values are set constants using the set  and which are 

parameters to be set by the calculator , this equation can be used to 

Tc = Ta + To

E = Eo + Ea E

Eo Ea

I = Ic + Is I = min(e, p) Ic

Is

Is

Is

[π, h, k, c]

[R, IC, b, E[o,a], y]
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+ Icyπh /Eo



generate some interesting estimations for the time required to complete a set of operations 
within a spherical system, and hence calculate the computational capacity of such a system.


Examining the Model’s Estimations Using Data 

Setting the Values of each Variable 
	 The set of data that will be fed into the model is that of a computational device of similar 
size to a standard desktop computer, although it will obviously be spherical, this is so that its 
results can be compared to real-world computational devices and hence see if the estimations 
given seem reasonable. In order to use the model the parameter set needs a complete set of 

values, this set being , although all of these values won’t have specific values 

but can instead be fed continuous data in order to receive a continuous output and hence 
study their affects on the system as a whole. In the scenario of modelling a spherical desktop 
computer, however, there is a value that will be set as a constant (discrete) value, that being the 
radius of the system, like all the other values it could be continuous, however it must remain 
within a reasonable range to continue being classified as a “Desktop sized” computer.

	 Hence the radius (R) of the system will be defined as a value approximately within the 
range of 0.03 to 0.10m, simply because this device would need to be contained within a shell 
of some sort and these values are roughly a bit below what most people would classify as a 
desktop computer (it’s important to remember this is the radius of a sphere, and therefore the 
diameter is twice these values). For simplicities sake the data fed to the model will have a 
constant radius of 0.05m, giving the device a 10cm diameter, which paired with a shell of width 
3-5cm would give the device a fairly reasonable total diameter of 16-20cm.


Then for this model the number of bits to be used as memory can be set to an amount 
higher than an average workstation as these bits are also used as the bus bits alongside purely 
storage based bits, for example a reasonable estimate for a suitable range could be 128 to 

1024 Gigabytes, or approx , hence for a base value  will be 

used as  .


	 Assuming that the buses in this model are large, the batch size  can be estimated to be 

between a tenth and a twentieth of the value of  such that an approximate base value for this 

can be , this isn’t quite as an exact a value as the previous two parameters as it’s 

quite complex to estimate and to do so would be outside the scale of this paper.


[R, IC, b, E[o,a], y]

Ic : 1 × 1012 < Ic < 8.2 × 1012 4 × 1012

Ic

b

Ic

4 × 1011
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	 The ratios between  are likely to have a profound yet non-linear affect on the time 

output of the estimation model therefore prior to any kind of calculations I will be just setting 
this ratio to 1:1 and can then vary this whilst graphing the results to see it’s effects visibly. The 

total value of  can be set fairly easily as it can basically be any real, positive value, so for this 

estimation it will be set to a 10000 Joule input, purely because it’s large enough to hopefully 

display some variation in the ideal ratios between  whilst still being a value that could 

probably be supplied to the system by the time humans get anywhere near to this quantity of 
computing power.


	 The number of operations required per bit, , only affects the output by a scale and 

average gradient of the output, meaning varying it would create some slightly different outputs, 
but the general shape of the graph would remain fairly similar, hence it will be set to 1 for this 
simulation.


Summarising these values 
	 The variable set of inputs is then:

•  - Radius of system - { }


•  - Bits to be used as memory - { }


•  - Number of bits that can be simultaneously transferred - { }


•  - Total Energy of system - { }


•  - Ratio of movement energy to operational energy- { }


•  - Operations required by each bit - {1}


	 (Midpoints of inequalities are the default values to be used in this simulation)


	 With the constants being:


•  - Speed of light 


•  - pi 


•  - Planck’s reduced constant 


•  - the approximate mass of a hydrogen atom in kilograms 


Graphing this Data 
	 Ideally, each value would be varied in its own graph, varying between the extremes of its 
range to see how it truly affects the final model estimation. However if that was done, more of 
this paper would be graphs than the actual model itself, hence the two variables which shall be 
varied and graphed shall be the total energy supplied to the simulation and the ratios between 
the two energy inputs.


E[o,a]

E

E[o,a]

y

R R : 0.03 < 0.05 < 0.10

Ic Ic : 1 × 1012 < 4 × 1012 < 8.2 × 1012

b b : Ic /20 < 4 × 1011 < Ic /10

E E : 1 < 10000 < 1 × 108

(Eo : Ea) (Eo : Ea) : (100 : 1) < (1 : 1) < (1 : 100)

y

c ≈ 2.9979 × 108

π ≈ 3.1415

h ≈ 1.0545 × 10−34

k ≈ 1.673774 × 10−27

Alfie Ranstead  of 8 12



	 First, the total energy, to graph this the value X will represent the total energy, using a 
ratio of 1:1 between energy inputs, making the line to be modelled:








	 Plotting this line shows the above graph, bearing in mind that for this case  is the time 

required to complete a complex computation approximated in the value summarisations and  

is the energy input to such a system. Knowing this gives a somewhat expected but still very 
interesting summary, that the model has effectively theorised that initially as more energy is 

added to a system it gets exponentially faster (shown by time per operation, , decreasing 

dramatically) before tapering off and flattening out. The exact values at which this occurs is not 
hugely significant as this estimation is based upon semi-random inputs but the trend still 
shows that in terms of energy, feeding more and more energy into a system gives diminishing 
benefits, which can be shown in the current chip industry with processors getting smaller and 
more densely packed with transistors rather than just putting more and more power into similar 
density chips.

	 It is also important to remember that although this simulation uses a “desktop” sized 
computer, it still assumes that the majority of the computer would be the processing unit which 
in traditional computers is not the case. Additionally it is assumed that the device is completely 
efficient (which in real world situations is effectively impossible), alongside various other 
assumptions which shouldn’t effect the data trends too much but would affect the actual value 
output.


y =
36 × (0.05) × (4 × 1012)

35 × (4 × 1012) × 1 − ( (1.673774 × 10−27) × (4 × 1012) × (2.9979 × 108)2

x
2 + ((1.673774 × 10−27) × (4 × 1012) × (2.9979 × 108)2)

)2

+ ((4 × 1012) × 1 × (3.1415) × (1.0545 × 10−34) ×
2
x

)

y =
7.2 × 10−2

1.4 1 − ( 601.7153531577336
x
2 × 601.7153531577336

)2
+

(2.65017 × 10−21)
x

y

x

y
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	 Introducing two more lines with varying ratios of energy given to transporting the 
information and actually operating on it shows how although this can greatly affect the time 
required per operation on smaller energy inputs, yet once these energy inputs get larger the 
results all converge on the same maximum time efficiency. 


	 In this case the green line is the same 1:1 ratio shown in the previous graph, with the 

blue line then being a 1:19 ratio (  - Transfer Energy : Operational Energy ) and the 

purple line being a 1:99 ratio. This suggests that the part of the computation that requires the 
most energy is not the operations, but moving the atoms needed for those operations to 
wherever they need to go. Which taking a logical approach to actually makes a lot of sense, as 
quantum operations occur on such a small scale that the energy required per operation makes 
sense to be lower than moving an atom by over a million times the width of itself.

	 This could then suggest that by compressing the computational system into a smaller 
volume yet keeping the same amount of particles and bits so as to complete the same 
computation the energy required to complete that same operation would decrease in a 
proportionate fashion, which can once again be linked to the computer processing industry, 
which is indeed compressing processing units into more and more dense packages and is 
seeing a proportional increase in power efficiency (and increased computational power due to 
keeping chip sizes somewhat constant whilst increasing density). Although to ensure the model 
does accurately simulate this it would require more analysis with more graphs, as this 
suggestion is just based upon the data collected in the graphs above and expectations based 
upon the model’s equational form and is not certain.


Ea : Eo
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Conclusion 
	 Taking a spherical computational system which is assumed to have all its parts equally 
distributed and valued across itself, the following model gives an estimation on the time 
required to complete a complex quantum computation:


 

	 

This model can then be used to study the relationship between different aspects of a 
computational system and the time taken per complex computation such as the relationship 
between energy input and time taken, or any other variable parameter from the set 

. 


	 Although the model has not been examined in detail and is unlikely to give precise, 
definitive, values for a set of parameters; based upon limited analysis it appears to provides 
somewhat valuable and approximately accurate trends for continuous parameters. In some 
ways this is actually more useful for this kind of model, as it can easily and clearly show how 
each parameter affects the expected output and with a lot more refinement - to the point at 
which the model could be trusted to give consistent accurate estimations - could then be used 
to learn which aspect of a computational system should be improved to gain the most 
computational capacity for the smallest price (and a myriad of other things).

	 To conclude, the model is useful for basic trend analysis and with additional work and 
calibration could be useful for a myriad of reasons, including: progressing the computational 
capacity of processors; increasing energy efficiency within a processor and studying the effect 
of the density of a system on it’s processing power.


Tc =
36RIc

35bc 1 − ( kIcc2

Ea + kIcc2 )2

+ Icyπh /Eo

[R, IC, b, E[o,a], y]
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